PR

”ウェルチのt検定”を例題でわかりやすく解説

t検定を使うことで「2つのデータに差があるかどうか」を統計学的に判断することができます。
t検定には以下の種類があり、この記事では”ウェルチのt検定”の実施手順について解説します。

  • 等分散を仮定した対応のないt検定(スチューデントのt検定)
  • 等分散を仮定しない対応のないt検定(ウェルチのt検定)
  • 対応のあるt検定

ウェルチのt検定とは

ウェルチのt検定は、2つのグループ(2群)の平均値を比較し、その差が統計的に有意かどうかを判断するための手法です。ウェルチのt検定はp値による有意差判定と母平均差分の信頼区間から構成されます。スチューデントのt検定と似ていますが、2つのグループの分散が異なる場合に適用されます。

ウェルチのt検定は以下条件に当てはまる場合に適用します。それ以外の場合は他のt検定を適用します。

  • 2群のデータは対応のないデータであること
  • 2つの母集団は正規分布に従っていること
  • 2群のデータの分散が等しいとはいえないこと

ウェルチのt検定とスチューデントのt検定の違い
分散の仮定
・スチューデントのt検定:2つのグループの分散が等しいと仮定します。
・ウェルチのt検定:2つのグループの分散が異なることを許容します。
【自由度の計算】
・スチューデントのt検定:サンプルサイズに基づく固定の自由度を使用します。
ウェルチのt検定:ウェルチ・サッタースウェイトの式を使用して自由度を調整します。

ウェルチのt検定の手順をわかりやすく解説

以下ウェルチのt検定の実施手順を解説します。以降記載の”t検定”は”ウェルチのt検定”のことを意味します。

t検定手順1.仮説を立てる
  1. 帰無仮説(H0):群1と群2の母平均値に”差がない”
  2. 対立仮説(H1):以下のいずれかの仮説を設定
    • 群1の母平均は群2の母平均より”大きい”
    • 群1の母平均は群2の母平均より”小さい”
    • 群1の母平均と群2の母平均は”異なる”
t検定手順2.検定方法(両側検定or片側検定)を決める

 対立仮説によって自動的に決まります。

  • 群1の母平均は群2の母平均より”大きい” ⇒ 片側検定(右側検定)
  • 群1の母平均は群2の母平均より”小さい” ⇒ 片側検定(左側検定)
  • 群1の母平均と群2の母平均は”異なる” ⇒ 両側検定
t検定手順3.統計量(t値)を算出する

2群の平均値、標準偏差、サンプルサイズからt検定の統計量(t値)を計算します。

t検定手順4.p値を算出、有意差判定

計算したt値と自由度を用いて、p値を算出します。
・片側検定のp値はt分布における検定統計量の上側確率
・両側検定のp値はt分布における検定統計量の上側確率の2倍。

ウェルチのt検定はスチューデントのt検定と異なり、自由度は以下の式で計算します。

p値が事前に設定した有意水準(例えば0.05)の場合、
p値<有意水準0.05 ⇒ 帰無仮説を棄却し対立仮説を採択 有意差がある
p値≧有意水準0.05 ⇒ 対立仮説を採択できず、有意差があるといえない

t検定手順5.信頼区間を算出する

信頼区間は以下の式で求められます。

信頼区間を適用しての有意差検定を行う
・信頼区間が0をまたがらない ⇒ 2群の母平均値は異なる
・信頼区間が0をまたがる ⇒ 2群の母平均値は異なるといえない

【例題】ウェルチのt検定をやってみよう!

では具体的な例題を使って、t検定を実際に行ってみましょう。

1.仮説を立てる
 ・帰無仮説:グループAとグループBの平均得点に差はない。
 ・対立仮説:グループAとグループBの平均得点に差がある。

2.検定方法
グループAとグループBの平均得点は”異なる”なので”両側検定

3.統計量を算出する
・各グループの平均値を計算

・各グループの標準偏差を計算

・t値を計算

4.p値を算出、有意差判定
自由度を以下の式で計算します。

t分布表を使って、t値2.51に対応するp値を求めます。p値が”0.0459”でした。これは有意水準0.05より小さいので、帰無仮説を棄却し対立仮説を採択 有意差があるといえます。

5.信頼区間を算出
95%信頼区間を計算します。

信頼区間は (2.34, 6.86) となり、0を含まないため、2つのグループの平均値に有意な差があると言えます。

タイトルとURLをコピーしました